US009092444B2

a2 United States Patent

Boudreau et al.

US 9,092,444 B2
Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CACHING OF DEEP STRUCTURES FOR

(58) Field of Classification Search

EFFICIENT PARSING None
See application file for complete search history.
(71) Applicant: International Business Machines 56 Ref Cited
Corporation, Armonk, NY (US) (56) ¢lerences Lot
U.S. PATENT DOCUMENTS
(72) Inventors: Michael Boudreau, Orange, CA (US);
Brad Moore, Dana Point, CA (US); 5882;8}?2222 i} ggggg %ﬂgar
: . : ang
ﬁhl}‘e.d MSO ‘isaadb?:‘I%éEG)’ Craig 2009/0204609 Al* $/2009 Labrou et al.c.c..... 707/5
- lrim, Sylmar, (Us) 2009/0306961 Al 12/2009 Lietal.
2010/0324885 Al 12/2010 Shri
(73) Assignee: International Business Machines 2011/0320498 Al* 12/2011 Flor ...ccoovvviviviininn, 707/797
Corporation, Armonk, NY (US) % .
cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Anh Tai Tran
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Schmeiser, Olsen & Watts;
U.S.C. 154(b) by 220 days. John Pivnichny
21) Appl. No.: 13/792,403 67 ABSTRACT
(21) Appl- No.: ? A parsing method and system. The method includes generat-
- ing an n-gram model of a domain and computing a tf-idf
(22) Filed: Mar. 11,2013 frequency associated with n-grams of the n-gram model. A
. . L. list including a frequently occurring group of n-grams based
(65) Prior Publication Data on the tf-idf frequency is generated. The frequently occurring
US 2014/0258314 Al Sep. 11, 2014 group of n-grams is transmitted to a deep parser component
and a deep parse output from the deep parser component is
(51) Int.Cl. generated. The deep parse output is stored within a cache and
GO6F 17/30 (2006.01) a processor verifies if a specified text word sequence of the
(52) US.Cl deep parse output is available in the cache.
CPC ..o, GO6F 17/30132 (2013.01) 20 Claims, 4 Drawing Sheets
Generate
n-gram Model 300
Y
Compute
ff-idf Fr’:quency (302
Y
Defermine Frequency |-304
Generate List - 308

Transmit List

Generate
Deep Parse Output

!

Store
Deep Parse Output

Avdllable

324
V_erIfy_
Avallabllty 0+ pvatiable

Retrieve

Parse Tree

310

|- 314

|- 318

332

From Cache 328
Apply to 130

U.S. Patent Jul. 28, 2015 Sheet 1 of 4 US 9,092,444 B2

14

< ~—
; -
™~ fe——>]
o 5 S
un
(=]
|\| L
~
| -
D
[72]
| -1
[@]
oo
M~
=
[«b}
| -
O
=
=
[-—
[e]
w

 Memoy Systens |

U.S. Patent Jul. 28, 2015 Sheet 2 of 4 US 9,092,444 B2

202

o i)

5
2050~ JJ (Quick)

e

205b~ JJ (Brown)

205c~ NN (Fox)
2014~ % 7%
205d—~{ VBD (jumped)
W~ %7
205e—~ IN (over)

wi~7 N 7

205f ~

JJ (Brown)

2059~

JJ (happy)

205h—~

NN (dog)

FIG. 2

U.S. Patent Jul. 28, 2015 Sheet 3 of 4 US 9,092,444 B2

Generate

n—gram Model 300
Y

if—iﬁo?rzlg:ency 302
Y

Determine Frequency }—304

!

Generate List - 308

!

Transmit List

!

Generate
Deep Parse Output — 314

!

Store
Deep Parse Output -~ 318

_-310

332

e 324 \
erity

I Deep Parse
‘AV"""b""Y Not Available

Available

Retrieve
From Cache 328

Y

Apply t
ParPsF;yTr:e 330 FIG 3

U.S. Patent Jul. 28, 2015 Sheet 4 of 4 US 9,092,444 B2
90
INPUT |
g4_| MEMORY | DATA 7 96
— DEVICE
92 91 93
| | |
INPUT OUTPUT
DEVICE PROCESSOR DEVICE
95
|
COMPUTER | _
MEMORY | cobE 197
DEVICE

FIG.4

US 9,092,444 B2

1
CACHING OF DEEP STRUCTURES FOR
EFFICIENT PARSING

FIELD

One or more embodiments of the invention relate generally
to a method for caching deep structures, and in particular to a
method and associated system for parsing the cached deep
structures.

BACKGROUND

Sorting data includes an inaccurate process with little flex-
ibility. Retrieving sorted data may include a complicated
process that may be time consuming and require a large
amount of resources. Accordingly, there exists a need in the
art to overcome at least some of the deficiencies and limita-
tions described herein above.

SUMMARY

A first embodiment of the invention provides a method
comprising: generating, by a computer processor of a com-
puting system, an n-gram model of a domain; computing, by
the computer processor, a tf-idf frequency associated with
n-grams of the n-gram model; determining, by the computer
processor based on the tf-idf frequency, a frequently occur-
ring group of n-grams of the n-grams; generating, by the
computer processor, a list comprising the frequently occur-
ring group of n-grams; transmitting, by the computer proces-
sor, the frequently occurring group of n-grams to a deep
parser component of the computing system; generating, by
the computer processor executing the deep parser component
with respect to the frequently occurring group of n-grams, a
deep parse output comprising results of the executing the
deep parser component with respect to the frequently occur-
ring group of n-grams; storing, by a computer processor in a
cache, the deep parse output; and verifying, by the computer
processor, if a specified text word sequence of the deep parse
output is available in the cache.

A second embodiment of the invention provides a com-
puter program product, comprising a computer readable
hardware storage device storing a computer readable program
code, the computer readable program code comprising an
algorithm that when executed by a computer processor of a
computer system implements a method, the method compris-
ing: generating, by the computer processor, an n-gram model
of'a domain; computing, by the computer processor, a tf-idf
frequency associated with n-grams of the n-gram model;
determining, by the computer processor based on the tf-idf
frequency, a frequently occurring group of n-grams of the
n-grams; generating, by the computer processor, a list com-
prising the frequently occurring group of n-grams; transmit-
ting, by the computer processor, the frequently occurring
group of n-grams to a deep parser component of the comput-
ing system; generating, by the computer processor executing
the deep parser component with respect to the frequently
occurring group of n-grams, a deep parse output comprising
results of the executing the deep parser component with
respect to the frequently occurring group of n-grams; storing,
by a computer processor in a cache, the deep parse output; and
verifying, by the computer processor, if a specified text word
sequence of the deep parse output is available in the cache.

A third embodiment of the invention provides a computer
system comprising a computer processor coupled to a com-
puter-readable memory unit, the memory unit comprising
instructions that when executed by the computer processor

10

20

25

35

40

45

2

implements a method comprising: generating, by the com-
puter processor, an n-gram model of'a domain; computing, by
the computer processor, a tf-idf frequency associated with
n-grams of the n-gram model; determining, by the computer
processor based on the tf-idf frequency, a frequently occur-
ring group of n-grams of the n-grams; generating, by the
computer processor, a list comprising the frequently occur-
ring group of n-grams; transmitting, by the computer proces-
sor, the frequently occurring group of n-grams to a deep
parser component of the computing system; generating, by
the computer processor executing the deep parser component
with respect to the frequently occurring group of n-grams, a
deep parse output comprising results of the executing the
deep parser component with respect to the frequently occur-
ring group of n-grams; storing, by a computer processor in a
cache, the deep parse output; and verifying, by the computer
processor, if a specified text word sequence of the deep parse
output is available in the cache.

A fourth embodiment of the invention provides a process
for supporting computing infrastructure, the process com-
prising providing at least one support service for at least one
of creating, integrating, hosting, maintaining, and deploying
computer-readable code in a computer comprising a com-
puter processor, wherein the computer processor executes
instructions contained in the code causing the computer to
perform a method comprising: generating, by the computer
processor, an n-gram model of a domain; computing, by the
computer processor, a tf-idf frequency associated with
n-grams of the n-gram model; determining, by the computer
processor based on the tf-idf frequency, a frequently occur-
ring group of n-grams of the n-grams; generating, by the
computer processor, a list comprising the frequently occur-
ring group of n-grams; transmitting, by the computer proces-
sor, the frequently occurring group of n-grams to a deep
parser component of the computing system; generating, by
the computer processor executing the deep parser component
with respect to the frequently occurring group of n-grams, a
deep parse output comprising results of the executing the
deep parser component with respect to the frequently occur-
ring group of n-grams; storing, by a computer processor in a
cache, the deep parse output; and verifying, by the computer
processor, if a specified text word sequence of the deep parse
output is available in the cache.

The present invention advantageously provides a simple
method and associated system capable of sorting data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system 2 for caching deep structures
enabling an efficient parsing process, in accordance with
embodiments of the present invention.

FIG. 2 illustrates a treebank associated with sample input
text, in accordance with embodiments of the present inven-
tion.

FIG. 3 illustrates an algorithm detailing a process flow
enabled by the system of FIG. 1, in accordance with embodi-
ments of the present invention.

FIG. 4 illustrates a computer apparatus used by the system
of FIG. 1 for caching deep structures enabling an efficient
parsing process, in accordance with embodiments of the
present invention.

DETAILED DESCRIPTION

FIG. 1 illustrates a system 2 for caching deep structures
enabling an efficient parsing process, in accordance with
embodiments of the present invention. System 2 enables a

US 9,092,444 B2

3

natural language processing (NLP) process. An NLP process
is defined herein as a technique for the ingestion and under-
standing of unstructured data. An NLP process enables an
NLP parser to provide deep parsing process. A deep parsing
process comprises creating a tree bank (tree structure) for
input text.

System 2 of FIG. 1 includes computers 5a . . . 5» connected
through a network 7 to a computing system 14. Network 7
may include any type of network including, inter alia, a local
area network, (LAN), a wide area network (WAN), the Inter-
net, a wireless network, etc. Computers 5a . . . 5z may include
any type of computing system(s) including, inter alia, a com-
puter (PC), a laptop computer, a tablet computer, a server, a
PDA, a smart phone, etc. Computing system 14 may include
any type of computing system(s) including, inter alia, a com-
puter (PC), a laptop computer, a tablet computer, a server, etc.
Computing system 14 includes a memory system 8. Memory
system 8 may include a single memory system. Alternatively,
memory system 8 may include a plurality of memory sys-
tems. Memory system 8 includes software 17 comprising a
parser component 17a. Software 17 enables a deep parsing
process.

A caching process (enabled by system 2) is driven via an
n-gram analysis of a domain. N-gram analysis comprises a
form of language modeling that locates token sequences and
associated frequencies. For example, system 2 may deter-
mine that a sequence such as “the happy dog” or “brown fox™
(e.g., a trigram and bigram respectively) are very common
within a domain. Once an associated language model has
been constructed, system 2 locates the most frequent n-grams
and run them through parser component 17a. Results of a
deep parse process are stored within a cache (e.g., a database
cache, file-backed cache, etc) and indexed by the n-gram. At
run time, parser component 17a compares each identified
token sequence to the cache contents. If the cache comprises
a pre-computed structure, the pre-computed structure will be
used by parser component 174 rather than be built at run time.
Additionally, system 2 uses a language model to pre-cache
variations on frequent n-grams. For example, in a scenario
with semantic overlap (e.g., rational software architect), sys-
tem 2 will select a longest applicable sequence. During a
process for modeling a domain (and computing pre-cache
structures ahead of time), system 2 may recognize the
sequence: “Rational Software Architect” as a common tri-
gram and compute the structure. Additionally, system 2 may
recognize the sequence: “Rational Software Architect for
Web 8.0.3” as a common 6-gram, and compute a structure for
this sequence. Therefore, at run time, if a user types in the
sequence: “rational software architect for Web”, the sequence
is not executed by the cache. The cache may retrieve a struc-
ture for the first three tokens of this entity and partially resolve
required computational structuring. The entire structure will
is not retrievable from the caching mechanism as this entity
does not contain the version token: (8.0.3). Additionally, sys-
tem 2 may to introduce domain-specific variations. For
example, if it is determined that retrieved products may
include suffixes comprising a version token, the cache may be
pre-loaded with a variation of a sequence that does not com-
prise a token. Using this technique to compute likely varia-
tions on pre-computed structures in the cache, system 2 may
account for variations in user input in a more precise manner.

FIG. 2 illustrates a treebank 200 associated with sample
input text, in accordance with embodiments of the present
invention. The sample input text comprises the sequence:
“The Quick Brown Fox jumped over the happy dog”. Blocks
202a-202fcomprise acronyms indicating phrases (e.g., block
2025 comprises NP=Noun Phrase, block 202¢ comprises

10

15

20

25

30

35

40

45

50

55

60

65

4

VP=Verb Phrase, etc). Blocks 2054-205/ comprise actual
portions of speech next to each token (e.g., block 205f com-
prises DT=determiner, block 205g comprises JJ=adjective,
block 205/ comprises NN=noun). System 2 of FIG. 1 may
enable a process to compute high frequency n-grams within a
corpus, structure the n-grams, cache the n-grams, and retrieve
the n-grams from the cache at run time for application to
treebank 200. Use of this process eliminates the need to
compute (i.e., by the parser) structures for sequences that
occur with high frequency.

FIG. 3 illustrates an algorithm detailing a process flow
enabled by system 2 of FIG. 1 for caching of deep structures
for an efficient parsing process 2, in accordance with embodi-
ments of the present invention. Each of the steps in the algo-
rithm of FIG. 3 may be enabled and executed by a computer
processor executing computer code. In step 300, an n-gram
model of a domain is generated. An n-gram model is defined
herein as a probabilistic language model for predicting a next
item in a sequence and comprising a form of a (n-1) order
Markov model. In step 302, a term frequency-inverse docu-
ment frequency (tf-idf) associated with n-grams of the
n-gram model (generated in step 300) is calculated. A tf-idf
frequency is defined herein as a numerical statistic reflecting
an importance of a word with respect to a document in a
collection or corpus. A tf-idf frequency may be used as a
weighting factor in information retrieval and text mining. A
tf-idf value increases proportionally to a number of times a
word appears in adocument, but is offset by a frequency of the
word in the corpus. Tf-idf comprises a product of two statis-
tics: term frequency and inverse document frequency. Term
frequency tf(t,d) may be determined by determining a raw
frequency of a term in a document (i.e., anumber of times that
a term t occurs in a document d. If a raw frequency of t is
defined as f{(t,d), then term frequency tf(t,d) comprises: tf(t,
d)=f(t,d). idf comprises a measure of whether a term is com-
mon or rare across all documents. idf may be obtained by
dividing a total number of documents by a number of docu-
ments comprising a term and then taking the logarithm of the
resulting quotient.

In step 304, a frequently occurring group of n-grams (ofthe
n-grams of step 302) is determined based on the tf-idf fre-
quency. In step 308, alist comprising the frequently occurring
group of n-grams is generated. In step 310, the frequently
occurring group of n-grams is transmitted to a deep parser
component of a computing system. In step 314, a deep parse
output is generated. The deep parse output comprises results
of executing deep parser component with respect to the fre-
quently occurring group of n-grams. In step 318, the deep
parse output is stored. In step 324, it is verified if a specified
text word sequence of the deep parse output is available in the
cache. If in step 324, it is verified that a specified text word
sequence of the deep parse output is available in the cache
then in step 328, the specified text word sequence is retrieved
from the cache and in step 330, the specified text word
sequence is applied to a parse tree. If in step 324, it is verified
that a specified text word sequence of the deep parse output is
not available in the cache then in step 332, the specified text
word sequence is deep parsed.

FIG. 4 illustrates a computer apparatus 90 (e.g., computing
system 14 of FIG. 1) used by system 2 of FIG. 1 for caching
deep structures enabling an efficient parsing process, in
accordance with embodiments of the present invention. The
computer system 90 includes a processor 91, an input device
92 coupled to the processor 91, an output device 93 coupled to
the processor 91, and memory devices 94 and 95 each coupled
to the processor 91. The input device 92 may be, inter alia, a
keyboard, a mouse, etc. The output device 93 may be, inter

US 9,092,444 B2

5

alia, a printer, a plotter, a computer screen, a magnetic tape, a
removable hard disk, a floppy disk, etc. The memory devices
94 and 95 may be, inter alia, a hard disk, a floppy disk, a
magnetic tape, an optical storage such as a compact disc (CD)
or a digital video disc (DVD), a dynamic random access
memory (DRAM), a read-only memory (ROM), etc. The
memory device 95 includes a computer code 97. The com-
puter code 97 includes algorithms (e.g., the algorithm of FIG.
3) for caching deep structures enabling an efficient parsing
process. The processor 91 executes the computer code 97.
The memory device 94 includes input data 96. The input data
96 includes input required by the computer code 97. The
output device 93 displays output from the computer code 97.
Either or both memory devices 94 and 95 (or one or more
additional memory devices not shown in FIG. 4) may include
the algorithm of FIG. 3 and may be used as a computer usable
medium (or a computer readable medium or a program stor-
age device) having a computer readable program code
embodied therein and/or having other data stored therein,
wherein the computer readable program code includes the
computer code 97. Generally, a computer program product
(or, alternatively, an article of manufacture) of the computer
system 90 may include the computer usable medium (or the
program storage device).

Still yet, any of the components of the present invention
could be created, integrated, hosted, maintained, deployed,
managed, serviced, etc. by a service supplier who offers to
cache deep structures enabling an efficient parsing process.
Thus the present invention discloses a process for deploying,
creating, integrating, hosting, maintaining, and/or integrating
computing infrastructure, including integrating computer-
readable code into the computer system 90, wherein the code
in combination with the computer system 90 is capable of
performing a method for caching deep structures enabling an
efficient parsing process. In another embodiment, the inven-
tion provides a business method that performs the process
steps of the invention on a subscription, advertising, and/or
fee basis. That is, a service supplier, such as a Solution Inte-
grator, could offer to cache deep structures enabling an effi-
cient parsing process. In this case, the service supplier can
create, maintain, support, etc. a computer infrastructure that
performs the process steps of the invention for one or more
customers. Inreturn, the service supplier can receive payment
from the customer(s) under a subscription and/or fee agree-
ment and/or the service supplier can receive payment from
the sale of advertising content to one or more third parties.

While FIG. 4 shows the computer system 90 as a particular
configuration of hardware and software, any configuration of
hardware and software, as would be known to a person of
ordinary skill in the art, may be utilized for the purposes stated
supra in conjunction with the particular computer system 90
of FIG. 4. For example, the memory devices 94 and 95 may be
portions of a single memory device rather than separate
memory devices.

While embodiments of the present invention have been
described herein for purposes of illustration, many modifica-
tions and changes will become apparent to those skilled in the
art. Accordingly, the appended claims are intended to encom-
pass all such modifications and changes as fall within the true
spirit and scope of this invention.

The invention claimed is:

1. A method comprising:

generating, by a computer processor of a computing sys-

tem, an n-gram model of a domain;

computing, by said computer processor, a term frequency-

inverse document frequency (tf-idf) associated with
n-grams of said n-gram model;

10

15

20

25

30

35

40

45

50

55

60

65

6

determining, by said computer processor based on said
tf-idf, a frequently occurring group of n-grams of said
n-grams;
generating, by said computer processor, a list comprising
said frequently occurring group of n-grams;

transmitting, by said computer processor, said frequently
occurring group of n-grams to a deep parser component
of said computing system;

generating, by said computer processor executing said

deep parser component with respect to said frequently
occurring group of n-grams, a deep parse output com-
prising results of said executing said deep parser com-
ponent with respect to said frequently occurring group
of n-grams;

storing, by said computer processor in a database cache,

said deep parse output;

indexing, by said computer processor executing said fre-

quently occurring group of n-grams in said database
cache, said deep parse output; and

verifying, by said computer processor, if a pre-computed

specified text word sequence of said deep parse output is

available in said database cache, wherein said verifying

comprises:

retrieving from said deep parse output, a plurality of
tokens of said deep parser output, wherein said plu-
rality of tokens are associated with a portion of said
pre-computed specified text word sequence, wherein
said plurality of tokens comprise suffixes associated
with structures of said deep parser output, and
wherein said plurality of tokens comprise a version
token; and

determining based on said plurality of tokens, variations
associated with said pre-computed specified text
word sequence.

2. The method of claim 1, wherein results of said verifying
indicate that said specified text word sequence is available in
said database cache, and wherein said method further com-
prises:

retrieving, by said computer processor from said database

cache, said specified text word sequence; and
applying, by said computer processor, said specified text
word sequence to a parse tree.

3. The method of claim 1, wherein results of said verifying
indicate that said specified text word sequence is not available
in said database cache, and wherein said method further com-
prises:

deep parsing, by said computer processor, said specified

text word sequence.

4. The method of claim 1, wherein each n-gram of said
frequently occurring group of n-grams comprises a cachekey.

5. The method of claim 1, wherein said deep parse output
comprises a cache value.

6. A computer program product, comprising a computer
readable hardware storage device storing a computer readable
program code, said computer readable program code com-
prising an algorithm that when executed by a computer pro-
cessor of a computer system implements a method, said
method comprising:

generating, by said computer processor, an n-gram model

of a domain;

computing, by said computer processor, a term frequency-

inverse document frequency (tf-idf) associated with
n-grams of said n-gram model;

determining, by said computer processor based on said

tf-idf, a frequently occurring group of n-grams of said
n-grams;

US 9,092,444 B2

7

generating, by said computer processor, a list comprising
said frequently occurring group of n-grams;

transmitting, by said computer processor, said frequently
occurring group of n-grams to a deep parser component
of said computing system;

generating, by said computer processor executing said

deep parser component with respect to said frequently
occurring group of n-grams, a deep parse output com-
prising results of said executing said deep parser com-
ponent with respect to said frequently occurring group
of' n-grams;

storing, by said computer processor in a database cache,

said deep parse output;

indexing, by said computer processor executing said fre-

quently occurring group of n-grams in said database
cache, said deep parse output; and

verifying, by said computer processor, if a pre-computed

specified text word sequence of said deep parse output is

available in said database cache, wherein said veritying

comprises:

retrieving from said deep parse output, a plurality of
tokens of said deep parser output, wherein said plu-
rality of tokens are associated with a portion of said
pre-computed specified text word sequence, wherein
said plurality of tokens comprise suffixes associated
with structures of said deep parser output, and
wherein said plurality of tokens comprise a version
token; and

determining based on said plurality of tokens, variations
associated with said pre-computed specified text
word sequence.

7. The computer program product of claim 6, wherein
results of said verifying indicate that said specified text word
sequence is available in said cache, and wherein said method
further comprises:

retrieving, by said computer processor from said cache,

said specified text word sequence; and

applying, by said computer processor, said specified text

word sequence to a parse tree.

8. The computer program product of claim 6, wherein
results of said verifying indicate that said specified text word
sequence is not available in said cache, and wherein said
method further comprises:

deep parsing, by said computer processor, said specified

text word sequence.

9. The computer program product of claim 6, wherein each
n-gram of said frequently occurring group of n-grams com-
prises a cache key.

10. The computer program product of claim 6, wherein
deep parse output comprises a cache value.

11. A computer system comprising a computer processor
coupled to a computer-readable memory unit, said memory
unit comprising instructions that when executed by the com-
puter processor implements a method comprising:

generating, by said computer processor, an n-gram model

of a domain;

computing, by said computer processor, a term frequency-

inverse document frequency (tf-idf) associated with
n-grams of said n-gram model;

determining, by said computer processor based on said

tf-idf, a frequently occurring group of n-grams of said
n-grams;
generating, by said computer processor, a list comprising
said frequently occurring group of n-grams;

transmitting, by said computer processor, said frequently
occurring group of n-grams to a deep parser component
of said computing system;

10

15

20

25

30

35

40

45

50

55

60

65

8

generating, by said computer processor executing said
deep parser component with respect to said frequently
occurring group of n-grams, a deep parse output com-
prising results of said executing said deep parser com-
ponent with respect to said frequently occurring group
of n-grams;

storing, by said computer processor in a database cache,

said deep parse output;

indexing, by said computer processor executing said fre-

quently occurring group of n-grams in said database
cache, said deep parse output; and

verifying, by said computer processor, if a pre-computed

specified text word sequence of said deep parse output is

available in said database cache, wherein said verifying

comprises:

retrieving from said deep parse output, a plurality of
tokens of said deep parser output, wherein said plu-
rality of tokens are associated with a portion of said
pre-computed specified text word sequence, wherein
said plurality of tokens comprise suffixes associated
with structures of said deep parser output, and
wherein said plurality of tokens comprise a version
token; and

determining based on said plurality of tokens, variations
associated with said pre-computed specified text
word sequence.

12. The computer system of claim 11, wherein results of
said verifying indicate that said specified text word sequence
is available in said cache, and wherein said method further
comprises:

retrieving, by said computer processor from said cache,

said specified text word sequence; and

applying, by said computer processor, said specified text

word sequence to a parse tree.

13. The computer system of claim 11, wherein results of
said verifying indicate that said specified text word sequence
is not available in said cache, and wherein said method further
comprises:

deep parsing, by said computer processor, said specified

text word sequence.

14. The computer system of claim 11, wherein each n-gram
of said frequently occurring group of n-grams comprises a
cache key.

15. The computer system of claim 11, wherein deep parse
output comprises a cache value.

16. A process for supporting computing infrastructure, the
process comprising providing at least one support service for
at least one of creating, integrating, hosting, maintaining, and
deploying computer-readable code in a computer comprising
a computer processor, wherein the computer processor
executes instructions contained in the code causing the com-
puter to perform a method comprising:

generating, by said computer processor, an n-gram model

of a domain;

computing, by said computer processor, a term frequency-

inverse document frequency (tf-idf) associated with
n-grams of said n-gram model;

determining, by said computer processor based on said

tf-idf, a frequently occurring group of n-grams of said
n-grams;
generating, by said computer processor, a list comprising
said frequently occurring group of n-grams;

transmitting, by said computer processor, said frequently
occurring group of n-grams to a deep parser component
of said computing system;

generating, by said computer processor executing said

deep parser component with respect to said frequently

US 9,092,444 B2

9

occurring group of n-grams, a deep parse output com-
prising results of said executing said deep parser com-
ponent with respect to said frequently occurring group
of' n-grams;
storing, by said computer processor in a database cache,
said deep parse output;
indexing, by said computer processor executing said fre-
quently occurring group of n-grams in said database
cache, said deep parse output; and
verifying, by said computer processor, if a pre-computed
specified text word sequence of said deep parse output is
available in said database cache, wherein said veritying
comprises:
retrieving from said deep parse output, a plurality of
tokens of said deep parser output, wherein said plu-
rality of tokens are associated with a portion of said
pre-computed specified text word sequence, wherein
said plurality of tokens comprise suffixes associated
with structures of said deep parser output, and
wherein said plurality of tokens comprise a version
token; and

10

20

10

determining based on said plurality of tokens, variations
associated with said pre-computed specified text
word sequence.

17. The process of claim 16, wherein results of said veri-
fying indicate that said specified text word sequence is avail-
able in said cache, and wherein said method further com-
prises:

retrieving, by said computer processor from said cache,

said specified text word sequence; and

applying, by said computer processor, said specified text

word sequence to a parse tree.

18. The process of claim 16, wherein results of said veri-
fying indicate that said specified text word sequence is not
available in said cache, and wherein said method further
comprises:

deep parsing, by said computer processor, said specified

text word sequence.

19. The process of claim 16, wherein each n-gram of said
frequently occurring group of n-grams comprises a cachekey.

20. The process of claim 16, wherein deep parse output
comprises a cache value.

#* #* #* #* #*

